N21—H212· · ·O12"	0.84 (4)	2.03 (4)	2.788 (5)	151 (4)
$N22 - H221 \cdot \cdot \cdot N12^{iii}$	0.82 (4)	2.74 (4)	3.526 (6)	161 (4)
N22—H222· · ·O12 ⁱⁱ	0.75 (4)	2.28 (4)	2.984 (5)	156 (4)
Symmetry codes: (i)	$\frac{1}{2} - x, -\frac{1}{2} - \frac{1}{2}$	y, z; (ii) – x	α, −y, z; (iii) x	$,-y,z-\frac{1}{2}.$

The intensity data were collected for a monoclinic unit cell with a = 13.419 (3), b = 15.733 (4), c = 10.573 (4) Å, $\beta = 113.19$ (2)°. During refinement the unit cell was transformed to higher orthorhombic symmetry; the transformation matrix was M = (201/001/010). The position of the H atoms of thiourea were refined with a common isotropic temperature factor U_{iso} , whereas for the H atoms of the phenyl rings, a riding model was used while refining common U_{iso} 's.

Data collection: CAD-4L diffractometer software. Cell refinement: CAD-4L diffractometer software. Data reduction: *LOPOTRI* (Gravereau, 1982). Program(s) used to solve structure: *SHELXS86* (Sheldrick, 1990). Program(s) used to refine structure: *SHELXL93* (Sheldrick, 1993). Molecular graphics: *ORTEP* (Johnson, 1965). Software used to prepare material for publication: *SHELXL93*.

This work was supported by grant No. 1/990917/93 from the Slovak Ministry of Education. One of the authors (JČ) thanks the French Government for a fellowship. The authors are indebted to Professors C. Kappenstein and Antoine Hardy for valuable discussions, Dr S. Petit for permission to use the FT-IR spectrometer and Dr I. Potočňák for help in preparing figures. R. E. Marsh, Senior Research Associate, Emeritus, Beckman Institute, USA, is also thanked for valuable comments.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KA1071). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Amiraslanov, I. R., Nadzhafov, G. N., Usubaliev, B. T., Musaev, A. A., Movsumov, E. M. & Mamedov, Ch. S. (1980). Zh. Strukt. Khim. 21, 140-145.
- Cavalca, L., Gasparri, G. F., Andreetti, G. D. & Domiano, P. (1967). Acta Cryst. 22, 90–98.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gravereau, P. (1982). LOPOTRI. Program for Data Reduction. Univ. of Bordeaux, France. (Unpublished.)
- Guseinov, G. A., Musaev, F. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Ch. S. (1983). Koord. Khim. 9, 1687–1694.
- Horrocks, W. D. Jr, Ishley, J. N. & Whittle, R. R. (1982). Inorg. Chem. 21, 3265–3269.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Nadzhafov, G. N., Usubaliev, B. T., Amiraslanov, I. R., Movsumov, E. M. & Mamedov, Ch. S. (1981). Koord. Khim. 7, 770-775.
- Nakacho, Y., Misawa, T., Fujiwara, T., Wakahara, A. & Tomita, K. (1976). Bull. Chem. Soc. Jpn, 49, 58-61.
- Potočňák, I., Dunaj-Jurčo, M. & Černák, J. (1993). Acta Cryst. C49, 1496–1498.
- Potočňák, I., Dunaj-Jurčo, M., Petříček, V. & Černák, J. (1994). Acta Cryst. 1902–1904.
- Rissanen, K., Valkonen, I., Kakkonen, P. & Leskelä, M. (1987). Acta Chem. Scand. Ser. A, 41, 299-309.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved

- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Smrčok, Ľ. & Weiss, Z. (1993). J. Appl. Cryst. 26, 140-141.
- Usubaliev, B. T., Guliev, F. T., Musaev, F. N., Ganbarov, D. M., Ashurova, S. A. & Movsumov, E. M. (1992). Zh. Strukt. Khim. 33, 203-207.

Acta Cryst. (1995). C51, 395-398

Sodium Bumetanide Trihydrate

MICHELE SAVIANO,* ROBERTO FATTORUSSO, ANGELINA LOMBARDI, LAURA ZACCARO AND CARLO PEDONE

Centro di Studio di Biocristallografia del CNR, Dipartimento di Chimica, Università di Napoli Federico II, via Mezzocannone, 4-80134 Napoli, Italy

(Received 18 November 1993; accepted 21 April 1994)

Abstract

The structure of sodium 3-(aminosulfonyl)-5-(butylamino)-4-phenoxybenzoate trihydrate (sodium bumetanide trihydrate), $Na^+.C_{17}H_{19}N_2O_5S^-.3H_2O$, consists of a layer of sodium ions and water molecules between two layers of bumetanide molecules. Sixcoordinate Na^+ ions linked by water molecules are arranged in columns parallel to b.

Comment

The loop diuretic bumetanide is a powerful inhibitor of the Na⁺, K⁺, Cl⁻ cotransport system in a variety of epithelial cells (Petzinger, Muller, Follmann, Deutscher & Kinne, 1989). Bumetanide, (I), is a competitive inhibitor of sodium-dependent taurocholate uptake into hepatocytes (Blitzer, Tatoosh, Donovan & Boyer, 1982). The solid-state structures of the bile acids and taurocholate have been reported (Campanelli, Candeloro, Giglio & Scaramuzza, 1987). We undertook the X-ray analysis of sodium bumetanide trihydrate, reported here, as part of our studies of the structures of bioactive molecules.

Acta Crystallographica Section C ISSN 0108-2701 ©1995

The molecular structure of the organic moiety is shown in Fig. 1. The geometrical parameters of the bumetanide molecule are unexceptional and in agreement with literature data for similar moieties. This analysis indicates that the N2—C5 bond has partial double-bond character. Bumetanide assumes a 'U' shape with ring A and the alkyl chain forming a hydrophobic region. The packing of the bumetanide molecules with the sodium ions and the water molecules is shown in Fig. 2. The structure consists of a layer of sodium ions and water molecules between two layers of bumetanide molecules with the carboxylic groups oriented towards

Fig. 1. A view of the molecule showing the labelling of the non-H atoms. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. The packing of the bumetanide molecules viewed down b. The Na atoms are drawn as filled circles.

the solvent molecules. Packing is characterized by columns of water-bridged Na⁺ ions arranged parallel to b. Centrosymmetric pairs of Na⁺ ions are bridged by two water molecules (Ow1 and Ow2); these symmetryrelated water molecules link alternate pairs of bridged Na⁺ ions along the columns with Na⁺...Ow distances in the range 2.367(4)–2.547(4)Å. In addition, another water molecule (Ow3) and the carboxylic atom O5 of the bumetanide bind to Na⁺ ions [Na⁺...O5 2.462 (3), Na⁺...Ow3 2.357 (4) Å] making each Na⁺ ion hexacoordinate. The Ow3 water molecule occupies the equatorial position in such a way that the pattern of the coordinating atoms appears to be distorted square bipyramidal. The geometric parameters of the hexacoordination and the distances between Na⁺ pairs are in agreement with those in the literature (Macdonald, Morrison & Murray, 1991). Adjacent Na⁺-H₂O columns are linked through Na⁺...O5(carboxylic) contacts and several hydrogen bonds involving water molecules and carboxylic O atoms belonging to symmetry-related units. A summary of these hydrogen bonds is presented in Table 3 and in Fig. 3.

Fig. 3. Part of the structure of sodium bumetanide trihydrate viewed approximately perpendicular to the *ac* plane showing the atomnumbering scheme and interatomic distances (Å) around the Na atom and the water molecules.

Experimental

Crystal data Na⁺.C₁₇H₁₉N₂O₅S⁻.3H₂O $M_r = 440.44$

Cu $K\alpha$ radiation $\lambda = 1.5418$ Å

SAVIANO, FATTORUSSO, LOMBARDI, ZACCARO AND PEDONE

Monoclinic	Cell parameters from 25	om 25 Table 2. Selected geometric parameters (Å, °)			
C2/c	reflections	S-01	1.439 (3)	O3—C7	1.409 (5)
a = 44.819(2) Å	$\theta = 20-24^{\circ}$	S-02	1.430 (3)	C7—C8	1.347 (7)
b = 5.3630 (8) Å	$\mu = 1.930 \text{ mm}^{-1}$	S—N1	1.622 (4)	C7—C12	1.373 (7)
D = 3.3039(8) A	T = 293 K	S-C1	1.760 (4)	N2—C13	1.434 (6)
c = 17.094 (4) A	I = 200 K	C1—C2	1.392 (5)	C13-C14	1.516 (8)
$\beta = 95.91 (2)^{\circ}$	Needle	C1C6	1.394 (6)	C17—O4	1.252 (5)
$V = 4231.2 (9) \text{ Å}^3$	$0.5 \times 0.4 \times 0.2 \text{ mm}$	C2—C3	1.386 (5)	C17—O5	1.261 (5)
Z = 8	Colourless	C3—C4	1.393 (6)	C8C9	1.398 (7)
$D = 1.383 \text{ Mg m}^{-3}$		C3—C17	1.514 (5)	C9—C10	1.343 (9)
$D_x = 1.565$ Mg III		C4—C5	1.400 (6)	C10C11	1.372 (8)
		C5—C6	1.386 (5)	C11—C12	1.394 (7)
Deterryllestics		C5—N2	1.368 (6)	C14—C15	1.494 (8)
Dala collection		C6—O3	1.381 (5)	C15—C16	1.51 (1)
Enraf–Nonius CAD-4F	$\theta_{\rm max} = 70^{\circ}$	01S02	116.7 (2)	C4-C3-C17	120.5 (3)
diffractometer	$h = -54 \rightarrow 54$	C5-N2-C13	124.4 (4)	01—S—N1	105.4 (2)
1. 2A scans	$k = 0 \rightarrow 6$	C3-C4-C5	121.3 (4)	N2-C13-C14	110.8 (4)
	$k = 0 \rightarrow 0$	01-S-C1	108.6 (2)	C4C5C6	117.9 (4)
Absorption correction:	$l = 0 \rightarrow 21$	C3-C17-O4	117.1 (3)	02—S—NI	113.8 (2)
none	2 standard reflections	C4—C5—N2	123.1 (4)	C3—C17—O5	118.5 (4)
8089 measured reflections	frequency: 60 min	02—S—C1	109.6 (2)	C6-C5-N2	119.0 (3)
3857 independent reflections	intensity decay: 3%	O4—C17—O5	124.4 (4)	N1—S—C1	101.5 (2)
2013 observed reflections		C1—C6—C5	121.0 (4)	C7—C8—C9	118.9 (5)
		S-C1-C2	119.6 (3)	C1-C6-03	118.9 (3)
$[I \geq 3.0\sigma(I)]$		C8—C9—C10	120.7 (6)	S-C1-C6	119.5 (3)
		C5—C6—O3	119.9 (4)	C9-C10-C11	120.1 (5)
Deferment		C2-C1-C6	120.9 (3)	C6-03-C7	117.8 (3)
керпетені		C10C11C12	120.2 (5)	$C_1 - C_2 - C_3$	118.6 (4)
Refinement on F	$w = 1/\sigma^2(F_{\rm o})$	03	123.3 (4)	C/-CI2-CII	118.2 (5)
B = 0.059	$(\Delta/\pi) = 0.10$	C2C3C4	120.4 (3)	03-07-012	114.7 (4)
K = 0.038	$(\Delta/0)_{\text{max}} = 0.19$	C13 - C14 - C15	114.9 (5)	$C_2 = C_3 = C_1 / C_1 / C_2 = C_2 = C_2 = C_1 / C_2 = C_2 = C_1 / C_2 = C_2 = C_2 = C_2 = C_2 = C_1 / C_2 = C_2 = C_2 = C_1 / C_2 = C_1 / C_2 = C_2 $	119.1 (4)
wR = 0.059	$\Delta \rho_{\rm max} = 0.1 / e A$	C8C7C12	122.0 (4)	CI4-CI5-CI6	112.8 (6)
S = 3.17	$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm A}^{-3}$	N1-S-C1-C2	105.3 (3)	01—S—C1—C2	-5.4 (4)
2913 reflections	Atomic scattering factors	C4-C5-N2-C13	6.3 (7)	C1-C6-O3-C7	- 107.2 (4)
338 narameters	from International Tables	C6—O3—C7—C8	8.9 (6)	C5-N2-C13-C14	173.9 (4)
Only acordinates of U stoms	for V ray Crystallography	N2-C13-C14-C15	-64.8 (6)	C2-C3-C17-04	- 7.6 (6)
Unity coordinates of H atoms	jor A-ray Crystallography				

Table 3. Intermolecular hydrogen bonds (Å, °) and contact distances (Å) around the Na⁺ ion

$D - H \cdot \cdot \cdot A$		$D \cdot \cdot \cdot A$	$D = \mathbf{H} \cdot \cdot \cdot \mathbf{A}$		
N1—H1···O1 ⁱ		2.954 (5)	154 (5)		
N1—H2···O5 ⁱⁱ		2.863 (5)	148 (4)		
Ow1—H21····N1 ^ü	i	3.058 (4)	121 (5)		
Ow1 — H20· · · Ow3	3	2.821 (5)	168 (5)		
Ow2—H23···O1 ^{iv}	,	2.807 (4)	162 (5)		
Ow2H22···O5		2.788 (5)	169 (5)		
Ow3—H25····O4		2.768 (4)	158 (5)		
Ow3 — H24····O4 ⁱⁱ	i	2.811 (5)	174 (4)		
Na· · ·Na ^v	3.514 (2)	Na···Ow2 ¹	3.367 (4)		
Na · · ·Na ^{vi}	3.502 (2)	Na· · ·Ow2 ^v	3.450 (4)		
Na· · · Ow1	3.378 (4)	Na· · ·Ow3'	3.357 (4)		
Na· · · Ow1 ^v	3.547 (4)	Na⊷ •O5	3.462 (3)		
Symmetry codes: (i) x, y - 1, z; (ii) x, -y, $z - \frac{1}{2}$; (iii) $\frac{3}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$;					
(iv) $x, 1 - y, \frac{1}{2} + z;$ (v) $\frac{3}{2} - x, \frac{1}{2} - y, 1 - z;$ (vi) $\frac{3}{2} - x, -\frac{1}{2} - y, 1 - z.$					

The structure was solved using *MULTAN80* (Main *et al.*, 1980) and refined by blocked full-matrix least squares with anisotropic displacement parameters for all non-H atoms. H atoms were located on the ΔF map and included in the structure-factor calculation with the isotropic temperature factors of their carrier atoms. All calculations were performed using *SDP* software (Enraf–Nonius, 1986) on a MicroVAX 3100 computer.

The authors would like to thank Professor E. Petzinger for the generous gift of the sodium bumetanide. This work was supported by CNR grant No. 89.5354

Table	1. Fractional	atomic	coordinates	and	equival	lent
	isotropic di	splacem	ent paramete	ers (Å	(x^2)	

refined

(1974, Vol. IV)

$B_{\rm eq} = (8\pi^2/3)\sum_i\sum_j U_{ij}a_i^*a_j^*\mathbf{a}_i.\mathbf{a}_j.$

	x	у	Ζ	B_{eq}
S	0.64344 (2)	0.0596 (2)	0.04043 (5)	2.37 (Ż)
01	0.66115 (6)	0.2730 (5)	0.0242 (2)	2.87 (6)
02	0.61218 (6)	0.0690 (6)	0.0143 (2)	3.23 (6)
N1	0.66074 (8)	-0.1786 (7)	0.0090 (2)	2.98 (7)
C1	0.64801 (8)	0.0058 (8)	0.1391 (2)	2.33 (8)
C2	0.66848 (8)	0.1482 (8)	0.1852 (2)	2.52 (8)
C3	0.67240 (8)	0.0975 (8)	0.2623 (2)	2.37 (8)
C4	0.65605 (9)	-0.0918 (8)	0.2928 (2)	2.72 (8)
C5	0.63553 (8)	-0.2366 (8)	0.2467 (2)	2.51 (8)
C6	0.63193 (8)	-0.1855 (8)	0.1695 (2)	2.44 (8)
03	0.61406 (6)	-0.3377 (5)	0.1209 (2)	2.70 (6)
C7	0.58273 (9)	-0.3077 (9)	0.1180 (2)	2.91 (9)
N2	0.61877 (8)	-0.4221 (8)	0.2744 (2)	3.50 (8)
O 4	0.71174 (6)	0.3918 (6)	0.2805 (2)	3.65 (7)
05	0.69608 (6)	0.2202 (6)	0.3837 (2)	2.91 (6)
C8	0.5696(1)	-0.119(1)	0.1524 (3)	4.3(1)
C9	0.5383(1)	-0.106(1)	0.1462 (4)	6.0(1)
C10	0.5216(1)	-0.279(1)	0.1066 (4)	6.2 (2)
C11	0.5351(1)	-0.472 (1)	0.0723 (4)	6.3 (2)
C12	0.5663 (1)	-0.489(1)	0.0778 (3)	4.4(1)
C13	0.6179(1)	-0.475 (1)	0.3536 (2)	3.8 (1)
C14	0.5946(1)	-0.673 (1)	0.3649 (3)	5.4(1)
C15	0.5630(1)	-0.598 (2)	0.3409 (4)	7.0 (2)
C16	0.5406(2)	-0.797 (2)	0.3567 (5)	8.9 (2)
C17	0.69516 (8)	0.2470 (8)	0.3127 (2)	2.46 (8)
Na	0.74152 (4)	-0.0007 (3)	0.43756 (9)	2.99 (3)
Ow1	0.77266 (6)	0.3570 (6)	0.4337 (2)	3.60 (7)
Ow2	0.71680 (6)	0.6309 (6)	0.4704 (2)	3.15 (6)
Ow3	0.75300 (6)	0.7497 (6)	0.3348 (2)	3.38 (6)

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: NA1078). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Blitzer, B. L., Tatoosh, S. L., Donovan, C. B. & Boyer, J. L. (1982). Am. J. Physiol. 243, G48-G53.
- Campanelli, A. R., Candeloro, S., Giglio, E. & Scaramuzza, L. (1987). J. Lipid Res. 28, 483–489.
- Enraf-Nonius (1986). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- Macdonald, A. L., Morrison, P. & Murray, A. (1991). Acta Cryst. C47, 728-730.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Petzinger, E., Muller, N., Follmann, W., Deutscher, J. & Kinne, R. K. H. (1989). Am. J. Physiol. **193**, G78–G86.

Acta Cryst. (1995). C51, 398-401

Trimethylammonium Tin Sulfide

KEMIN TAN, YOUNGHEE KO AND JOHN B. PARISE

Department of Earth and Space Sciences, State University of New York, Stony Brook, New York 11794-2100, USA

(Received 17 March 1994; accepted 12 September 1994)

Abstract

The structure of trimethylammonium tin sulfidewater (1/0.72), $[(CH_3)_3NH]_2[Sn_3S_7].0.72H_2O$, consists of sheets with 24-membered ring openings containing alternating Sn and S atoms. Organic molecules resulting from the breakdown of the starting tetramethylammonium template reside between these sheets, which are stacked parallel to (001).

Comment

Crystalline microporous metal sulfides form a novel family of open framework materials (Bedard, Wilson, Vail, Bennett & Flanigen, 1989; Bedard, Vail, Wilson & Flanigen, 1989, 1990). The structural details of some of the antimony (Dittmar & Schäfer, 1978; Eisenmann & Schäfer, 1979; Sheldrick & Häusler, 1988; Parise, 1990, 1991; Parise & Ko, 1992; Tan, Ko & Parise, 1994), tin (Sheldrick, 1988; Ko, Cahill & Parise, 1994; Parise, Ko, Rijssenbeek, Nellis, Tan & Koch, 1994) and germanium sulfides (Bedard, Wilson, Vail, Bennett & Flanigen, 1989) have been reported. Recently, Parise, Ko, Rijssenbeek, Nellis, Tan & Koch (1994) solved the structure of tetramethylammonium tin sulfide (TMA-SnS-1) (Bedard, Vail, Wilson & Flanigen, 1989). This substance was synthesized hydrothermally from slurries of SnS₂, tetramethylammonium hydroxide (TMA-OH), elemental S and H₂O. It has a framework similar to that described by Sheldrick & Braunbeck (1990) for the alkali metal selenide analogue $CS_2Sn_3Se_7$. Here, we report a closely related compound obtained after prolonged heating of the same organic template (TMA-OH) but with different Sn and S reactants. The new structure is designated TMA-SnS-1a.

The primary building unit for TMA-SnS-1a is a $[SnS_5]^{6-}$ trigonal bipyramid, which is common in both open and dense tin sulfide frameworks (Krebs, 1983). The secondary building unit (Fig. 1*a*) is an Sn₃S₄ semicube formed by three edge-sharing $[SnS_5]^{6-}$ trigonal bipyramids. Six semi-cubes, oriented alternately up and down, define a 24-membered ring as shown in Fig. 1(*b*). The rings, approximately 8.3 Å in radius, bridge through semi-cubes forming Sn₃S₇ sheets similar to that found in TMA-SnS-1. The structure (Fig. 2) consists of sheets stacked parallel to (001).

Bond-valence sums (Brown & Wu, 1976) were consistent with oxidation states of +4 and -2 for Sn and S, respectively. Therefore, the Sn₃S₇ sheet is negatively charged with charge compensation being achieved by protonation of either the framework or the extra-framework organic species residing between the sheets.